The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Bandwidth, Q factor, and resonance models of antennas

Author

Summary, in English

In this paper, we introduce a first order accurate resonance model based on a second order Pade approximation of the reflection coefficient of a narrowband antenna. The resonance model is characterized by its Q factor, given by the frequency derivative of the reflection coefficient. The Bode-Fano matching theory is used to determine the bandwidth of the resonance model and it is shown that it also determines the bandwidth of the antenna for sufficiently narrow bandwidths. The bandwidth is expressed in the Q factor of the resonance model and the threshold limit on the reflection coefficient. Spherical vector modes are used to illustrate the results. Finally, we demonstrate the fundamental difficulty of finding a simple relation between the Q of the resonance model, and the classical Q defined as the quotient between the stored and radiated energies, even though there is usually a close resemblance between these entities for many real antennas.

Publishing year

2006

Language

English

Pages

1-20

Publication/Series

Progress in Electromagnetics Research-Pier

Volume

62

Document type

Journal article

Publisher

EMW Publishing

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1070-4698