The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration

Author

Summary, in English

A combination method of frequency domain photon migration (FDPM) and gas in scattering media absorption spectroscopy (GASMAS) is used for assessment of the mean optical path length (MOPL) and the gas absorption in gas-filled porous media, respectively. Polystyrene (PS) foams, with extremely high physical porosity, are utilized as sample materials for proof-of-principle demonstration. The optical porosity, defined as the ratio between the path length through the pores and the path length through the medium, is evaluated in PS foam and found consistent with the measured physical porosity. The method was also utilized for the study of balsa and spruce wood samples. (C) 2012 Optical Society of America

Department/s

Publishing year

2012

Language

English

Pages

16942-16954

Publication/Series

Optics Express

Volume

20

Issue

15

Document type

Journal article

Publisher

Optical Society of America

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1094-4087