The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Rational Engineering of Mannosyl Binding in the Distal Glycone Subsites of Cellulomonas fimi Endo-beta-1,4-mannanase: Mannosyl Binding Promoted at Subsite-2 and Demoted at Subsite-3

Author

  • Omid Hekmat
  • Leila Lo Leggio
  • Anna Rosengren
  • Jurate Kamarauskaite
  • Katarina Kolenová
  • Henrik Stålbrand

Summary, in English

To date, rational redesign of glycosidase active-site clefts has been mainly limited to the removal of essential functionalities rather than their introduction. The glycoside hydrolase family 26 endo-beta-1, 4-mannanase from the soil bacterium Cellulomonas fimi depolymerizes various abundant plant mannans. On the basis of differences in the structures and hydrolytic action patterns of this wild-type (but recombinantly expressed) enzyme and a homologous mannanase from Cellvibrio japonicus, two nonconserved amino acid residues at two distal glycone-binding subsites of the C. fimi enzyme were substituted, Ala323Arg at subsite -2 and Phe325Ala at subsite -3, to achieve inverted mannosyl affinities in the respective subsites, mimicking the Ce.japonicus enzyme that has an Arg providing mannosyl interactions at subsite -2. The X-ray crystal structure of the C.fimi doubly substituted mannanase was determined to 2.35 angstrom resolution and shows that the introduced Arg323 is in a position suitable for hydrogen bonding to mannosyl at subsite -2. We report steady-state enzyme kinetics and hydrolysis-product analyses using anion-exchange chromatography and a novel rapid mass spectrometric profiling method of O-18-labeled products obtained using (H2O)-O-18 as a solvent. The results obtained with oligosacharide substrates show that although the catalytic efficiency (k(cat)/K-m) is wild-type-like for the engineered enzyme, it has an altered hydrolytic action pattern that stems from promotion of substrate binding at subsite -2 (due to the introduced Arg323) and demotion of it at subsite -3 (to which removal of Phe325 contributed). However, k(cat)/K-m decreased similar to 1 order of magnitude with polymeric substrates, possibly caused by spatial repositioning of the substrate at subsite -3 and beyond for the engineered enzyme.

Publishing year

2010

Language

English

Pages

4884-4896

Publication/Series

Biochemistry

Volume

49

Issue

23

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biochemistry and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0006-2960