The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Approximate distance oracles for geometric spanners

Author

Summary, in English

Given an arbitrary real constant epsilon > 0, and a geometric graph G in d-dimensional Euclidean space with n points, O(n) edges, and constant dilation, our main result is a data structure that answers (1 + epsilon)-approximate shortest-path-length queries in constant time. The data structure can be constructed in O( n log n) time using O( n log n) space. This represents the first data structure that answers (1 + epsilon)-approximate shortest-path queries in constant time, and hence functions as an approximate distance oracle. The data structure is also applied to several other problems. In particular, we also show that approximate shortest-path queries between vertices in a planar polygonal domain with "rounded" obstacles can be answered in constant time. Other applications include query versions of closest-pair problems, and the efficient computation of the approximate dilations of geometric graphs. Finally, we show how to extend the main result to answer (1 + epsilon)-approximate shortest-path-length queries in constant time for geometric spanner graphs with m = omega(n) edges. The resulting data structure can be constructed in O(m + n log n) time using O(n log n) space.

Department/s

  • Computer Science

Publishing year

2008

Language

English

Publication/Series

ACM Transactions on Algorithms

Volume

4

Issue

1

Document type

Journal article

Publisher

Association for Computing Machinery (ACM)

Topic

  • Computer Science

Keywords

  • geometric graphs
  • approximation algorithm
  • Shortest paths
  • computational geometry
  • spanners

Status

Published

Project

  • VR 2005-4085

ISBN/ISSN/Other

  • ISSN: 1549-6333