The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Controlling Hydrogenation of Graphene on Transition Metals

Author

Summary, in English

A monatomic layer of graphite (MG or graphene) adsorbed on the (111) faces of transition metals Pt, Ir, and Ni, has been employed for controlling the atomic hydrogen adsorption site selectivity and the amount of hydrogen adsorbed upon saturation. The variations in the graphene-metal chemical bonding caused by hydrogenation and the values of saturated hydrogen coverage have been studied by X-ray photoemission and X-ray absorption spectroscopy. The hydrogenation of the graphene/metal systems has also been compared to the hydrogen adsorption on highly oriented pyrolytic graphite under the same experimental conditions. It has been found that graphene adsorption on the transition metal substrates can drastically enhance the hydrogen uptake values. The highest values have been observed for MG/Ir(111), less for MG/Pt(111), even less for MG/Ni and the least for the adsorption on bulk graphite. The high level of H coverage on MG/Ir and MG/Pt has been assigned to the preferential H adsorption on the more bonding patches (pores) of the MG/metal coincidence lattice. This adsorption creates unpaired electrons which contribute to a strengthening of the graphene-metal bonds. In this way, the densest possible graphane-like patches can be formed on MG/Pt and MG/Ir. On the MG/Ni interface the formation of graphane is obstructed by the strong interfacial bonding.

Department/s

Publishing year

2010

Language

English

Pages

18559-18565

Publication/Series

Journal of Physical Chemistry C

Volume

114

Issue

43

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447