The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400.

Author

Summary, in English

Xylose fermentation in yeast has been a target of research for years, yet not all the factors that may affect xylose fermentation perfomance of yeast strains are known. In this study, the mutant S. cerevisiae strain TMB 3400, which has good xylose fermentation properties, was compared with its parental strain to examine the factors behind the improved xylose utilization at protein level. The proteome of the parental and the mutant strains were characterized by difference in gel electrophoresis (DiGE) to quantitatively identify proteins that are expressed at altered levels in the mutant. The most significant changes detected by proteome analysis were the 6-10-fold increased levels of xylose reductase, xylitol dehydrogenase and transketolase (Tkl1) in the mutant, which is in accordance with previous knowledge about xylose metabolism in yeast. The level of acetaldehyde dehydrogenase (Ald6) was also significantly increased. In addition, several proteins homologous to proteins from yeast species other than S. cerevisiae were identified in both strains, demonstrating the genetic heterogeneity of industrial yeast strains. The results were also compared with a previously reported transcription analysis performed with identical experimental set-up; however, very little correlation between the two datasets was observed. The results of the proteome analysis were in good agreement with a parallel study in which rationally designed overexpression of XR, XDH and the non-oxidative pentose phosphate pathway resulted in similar improvement in xylose utilization, which demonstrates the usefulness of proteome analysis for the identification of target genes for further metabolic engineering strategies in industrial yeast strains. Copyright (c) 2009 John Wiley & Sons, Ltd.

Publishing year

2009

Language

English

Pages

371-382

Publication/Series

Yeast

Volume

26

Issue

7

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Immunology in the medical area
  • Industrial Biotechnology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1097-0061