The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Visual flight control in naturalistic and artificial environments.

Author

Summary, in English

Although the visual flight control strategies of flying insects have evolved to cope with the complexity of the natural world, studies investigating this behaviour have typically been performed indoors using simplified two-dimensional artificial visual stimuli. How well do the results from these studies reflect the natural behaviour of flying insects considering the radical differences in contrast, spatial composition, colour and dimensionality between these visual environments? Here, we aim to answer this question by investigating the effect of three- and two-dimensional naturalistic and artificial scenes on bumblebee flight control in an outdoor setting and compare the results with those of similar experiments performed in an indoor setting. In particular, we focus on investigating the effect of axial (front-to-back) visual motion cues on ground speed and centring behaviour. Our results suggest that, in general, ground speed control and centring behaviour in bumblebees is not affected by whether the visual scene is two- or three dimensional, naturalistic or artificial, or whether the experiment is conducted indoors or outdoors. The only effect that we observe between naturalistic and artificial scenes on flight control is that when the visual scene is three-dimensional and the visual information on the floor is minimised, bumblebees fly further from the midline of the tunnel. The findings presented here have implications not only for understanding the mechanisms of visual flight control in bumblebees, but also for the results of past and future investigations into visually guided flight control in other insects.

Publishing year

2012

Language

English

Pages

869-876

Publication/Series

Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

Volume

198

Issue

12

Document type

Journal article

Publisher

Springer

Topic

  • Zoology

Keywords

  • Bumblebee
  • Vision
  • Flight control
  • Ground speed
  • Centring

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1432-1351