The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Pathway proteomics - Global and focused approaches

Author

Summary, in English

Biological pathways represent the relationships (reactions and interactions) between biological molecules in the context of normal cellular functions and disease mechanisms. Understanding the roles of proteins and signaling pathways expressed within disease, and their link to drug discovery and drug development are central in today's target-driven pharmaceutical processes. This article gives an overview of proteomics strategies, including global expression analysis as well as focused approaches using multidimensional separation by both gel- and liquid-phase techniques linked to mass spectrometry, as applied to two of the pathways involved in inflammatory diseases. In primary human cell studies, our group has annotated and identified thousands of proteins using both electrospray ionization and matrix-assisted laser desorption ionization (MALDI)-sequencing technology. Annotations made from gel images and chromatography fractionation, interfaced to high-end mass spectrometry sequence and structure identity, are cornerstones in cutting-edge protein expression profiling. Regarding phosphorylation mechanisms of kinases, the quantitative stoichiometry can be determined using affinity probe isolations. Another strategy involves micro-preparative sample processing, which has been used to analyze single-target phosphoproteins and their relative phospho-stoichiometry.

Publishing year

2005

Language

English

Pages

113-122

Publication/Series

American Journal of PharmacoGenomics

Volume

5

Issue

2

Document type

Journal article

Publisher

Adis International

Topic

  • Analytical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1175-2203