The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Distribution, cellular localization, and therapeutic potential of the tumor-associated antigen Ku70/80 in glioblastoma multiforme.

Author

Summary, in English

Antibodies specifically targeting tumor-associated antigens have proved to be important tools in the treatment of human cancer. A desirable target antigen should be unique to tumor cells, abundantly expressed, and readily available for antibody binding. The Ku70/80 DNA-repair protein is expressed in the nucleus of most cells; it is, however, also present on the cell surface of tumor cell lines, and antibodies binding Ku70/80 at the cell surface were recently shown to internalize into tumor cells. To evaluate the potential of Ku70/80-antigen as a therapeutic target for immunotoxins in glioblastoma multiforme, we investigated binding and localization of Ku70/80-specific antibodies in tissue samples from glioblastomas and normal human brains, and in glioma cell cultures. Furthermore, the internalization and drug-delivery capacity were evaluated by use of immunotoxicity studies. We demonstrate that Ku70/80 is localized on the cell plasma membrane of glioma cell lines, and is specifically present in human glioblastoma tissue. Antibodies bound to the Ku70/80 antigen on the cell surface of glioma cells were found to internalize via endocytosis, and shown to efficiently deliver toxins into glioblastoma cells. The data further imply that different antibodies directed against Ku70/80 possess different abilities to target the antigen, in relation to its presentation on the cell surface or intracellular localization. We conclude that Ku70/80 antigen is uniquely presented on the plasma membrane in glioblastomas, and that antibodies specific against the antigen have the capacity to selectively bind, internalize, and deliver toxins into tumor cells. These results imply that Ku70/80 is a potential target for immunotherapy of glioblastoma multiforme.

Publishing year

2010

Language

English

Pages

207-215

Publication/Series

Journal of Neuro-Oncology

Volume

97

Document type

Journal article

Publisher

Springer

Topic

  • Cancer and Oncology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1573-7373