The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A Game Theoretic Approach for Load Balancing in Computational Grids

Author

Summary, in English

Load balancing is a very important and complex problem in computational grids. A computational grid differs from traditional high-performance computing systems in the heterogeneity of the computing nodes, as well as the communication links that connect the different nodes together. There is a need to develop algorithms that can capture this complexity yet can be easily implemented and used to solve a wide range of load-balancing scenarios. In this paper, we propose a game-theoretic solution to the grid load-balancing problem. The algorithm developed combines the inherent efficiency of the centralized approach and the fault-tolerant nature of the distributed, decentralized approach. We model the grid load-balancing problem as a noncooperative game, whereby the objective is to reach the Nash equilibrium. Experiments were conducted to show the applicability of the proposed approaches. One advantage of our scheme is the relatively low overhead and robust performance against inaccuracies in performance prediction information.

Publishing year

2007

Language

English

Pages

1-11

Publication/Series

IEEE Transactions on Parallel and Distributed Systems

Volume

19

Issue

2

Document type

Journal article

Publisher

IEEE - Institute of Electrical and Electronics Engineers Inc.

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1045-9219