The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Biochemical properties and microbial community structure of five different soils after atrazine addition

Author

  • Jorge Mahia
  • Serafin Jesus Gonzalez-Prieto
  • Angela Martin
  • Erland Bååth
  • Montserrat Diaz-Ravina

Summary, in English

Atrazine is one of the most used herbicides worldwide; however, consequences of its long-term agricultural use are still unknown. A laboratory study was performed to examine changes in microbial properties following ethylamino-N-15-atrazine addition, at recommended agronomic dose, to five acidic soils from Galicia (NW Spain) showing different physico-chemical characteristics, as well as atrazine application history. Net N mineralization was observed in all soils, with nitrate being the predominant substance formed. The highest values were detected in soils with low atrazine application history. From 2% to 23% of the atrazine-N-15 was found in the soil inorganic-N pool, the highest values being detected after 9 weeks in soils with longer atrazine application history and lower indigenous soil N mineralization. The application of atrazine slightly reduced the amount of soil N mineralized and microbial biomass at short term. Soluble carbohydrates and beta-glucosidase and urease activity decreased with incubation time, but were not significantly affected by the single application of atrazine. Microbial community structure changed as consequence of both soil type and incubation time, but no changes in the phospholipid fatty acid (PLFA) pattern were detected due to recent atrazine addition at normal doses. The saturated 17- to 20-carbon fatty acids had higher relative abundance in soils with a longer atrazine history and fungal biomass, as indicated by the PLFA 18:2 omega 6,9, decreased with the incubation time. The results suggested that the PLFA pattern and soil N dynamics can detect the long-term impact of repeated atrazine application to agricultural soils.

Publishing year

2011

Language

English

Pages

577-589

Publication/Series

Biology and Fertility of Soils

Volume

47

Issue

5

Document type

Journal article

Publisher

Springer

Topic

  • Biological Sciences

Keywords

  • Atrazine
  • N mineralization
  • Enzyme activities
  • Phospholipid fatty acid
  • pattern

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0178-2762