The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Hybrid Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics

Author

Summary, in English

The homogeneous charge compression ignition ( HCCI) combustion engine principle lacks direct ignition timing control, instead the auto-ignition depends on the operating condition. Since auto-ignition of a homogeneous mixture is very sensitive to operating conditions, fast combustion phasing control is necessary for reliable operation. For this paper, a six-cylinder heavy-duty HCCI engine was controlled on a cycle-to-cycle basis in real time. Sensors, actuators and control structures for control of the HCCI combustion were compared. Among several actuators for HCCI engine control suggested, two actuators were compared-i.e., dual-fuel actuation and variable valve actuation (VVA). As for control principles, model predictive control (MPC) has several desirable features and today MPC can be applied to relatively fast systems, such as VVA and dual-fuel actuation. For sensor feedback control of the HCCI engine, cylinder pressure and ion current - i.e., the electronic conductive properties in the reaction zone - were compared. Combustion phasing control based on ion current was compared to control based on cylinder pressure. For the purpose of control synthesis requiring dynamic models, system identification provided models of the HCCI combustion, the models being validated by stochastic model validation. With such models providing a basis for model-based control, MPC control results were compared to PID and LQG control results. While satisfying the constraints on cylinder pressure, both control of the combustion phasing and control of load torque was achieved with simultaneous minimization of the fuel consumption and emissions.

Publishing year

2006

Language

English

Pages

422-448

Publication/Series

International Journal of Control

Volume

79

Issue

5

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Control Engineering
  • Other Mechanical Engineering

Status

Published

Project

  • HCCI Control
  • HYCON—Hybrid Control: Taming Heterogeneity and Complexity of Networked Embedded Systems

ISBN/ISSN/Other

  • ISSN: 0020-7179