The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Long-term exposure to enhanced ultraviolet-B radiation in the sub-arctic does not cause oxidative stress in Vaccinium myrtillus

Author

Summary, in English

The aim of this work was to assess whether or not oxidative stress had developed in a dwarf shrub bilberry (Vaccinium myrtillus L.) under long-term exposure to enhanced levels of ultraviolet-B (u.v.-B) radiation. The bilberry plants were exposed to increased u.v.-B representing a 15 stratospheric ozone depletion for seven full growing seasons (19911997) at Abisko, Swedish Lapland (68N). The oxidative stress was assessed on leaves and stems by analysing ascorbate and glutathione concentrations, and activities of the closely related enzymes ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). The affects of autumnal leaf senescence and stem cold hardening on these variables were also considered. The results showed that the treatment caused scarcely any response in the studied variables, indicating that u.v.-B flux representing a 15 ozone depletion under clear sky conditions is not sufficient to cause oxidative stress in the bilberry. It is suggested that no strain was evoked since adaptation was possible under such u.v.-B increases. The studied variables did, however, respond significantly to leaf senescence and especially to stem cold hardening.

Publishing year

1998

Language

English

Pages

691-697

Publication/Series

New Phytologist

Volume

140

Issue

4

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Ecology
  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1469-8137