The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys)

Author

Summary, in English

The photoreceptor cells of the nocturnal spider Cupiennius salei were investigated by intracellular electrophysiology. (1) The responses of photoreceptor cells of posterior median (PM) and anterior median (AM) eyes to short (2 ms) light pulses showed long integration times in the dark-adapted and shorter integration times in the light-adapted state. (2) At very low light intensities, the photoreceptors responded to single photons with discrete potentials, called bumps, of high amplitude (2-20 mV). When measured in profoundly dark-adapted photoreceptor cells of the PM eyes these bumps showed an integration time of 128 +/- 35 ms (n = 7) whereas in dark-adapted photoreceptor cells of AM eyes the integration time was 84 +/- 13 ms (n = 8), indicating that the AM eyes are intrinsically faster than the PM eyes. (3) Long integration times, which improve visual reliability in dim light, and large responses to single photons in the dark-adapted state, contribute to a high visual sensitivity in Cupiennius at night. This conclusion is underlined by a calculation of sensitivity that accounts for both anatomical and physiological characteristics of the eye.

Publishing year

2007

Language

English

Pages

1081-1087

Publication/Series

Journal of Comparative Physiology A

Volume

193

Issue

10

Document type

Journal article

Publisher

Springer

Topic

  • Zoology

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1432-1351