The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Modification by the genes ALAD and VDR of lead-induced cognitive effects in children

Author

Summary, in English

Lead has negative effect on cognitive functions in children. However, individuals differ in susceptibility. One possible explanation is a genetic predisposition. Polymorphisms in the B-aminolevulinic acid dehydratase (ALAD) and the vitamin D receptor (VDR) genes may modify lead metabolism and neurotoxicity, but information regarding the central nervous system is very limited. The aim of the study was to determine whether ALAD and VDR polymorphisms modify blood lead (B-Pb), and the association between B-Pb and cognitive function (IQ) in children. In 2007-2010 a cohort of 175 children (age 6-10 years, mean 7.8) was recruited in Southern Poland, tested for IQ (Wechsler intelligence scale) and analyzed for B-Pb (range 9.0-221; mean 46.6 mu g/L), ALAD (Rsal, Mspl) and VDR (Fokl, Bsml, Taql) polymorphisms. ALAD or VDR genotypes were not associated with B-Pb. B-Pb was non-significantly negatively associated with full scale IQ (r(S) = -0.11; P = 0.14), and significantly with performance subscale results (r(S) = -0.19; P = 0.01). The ALAD Rsal polymorphism modified the relationship between full scale IQ and B-Pb: Rsal T carriers had a steeper slope compared to CC homozygote carriers (beta coefficient -0.06 vs 0.32, respectively, P for interaction < 0.001, adjusted for the child's age, mother's education and family income). This means that with increasing B-Pb with 1 mu g/L,T carriers demonstrate 0.06 score lower IQ. For the VDR Bsml, B carriers had a steeper slope than the bb homozygotes carriers (beta coefficient -0.08 vs 0.16, respectively, P for interaction = 0.001), and similar effect was found for Taql t carriers vs TT homozygotes (P for interaction = 0.02). For ALAD Mspl and VDR Fokl there was no significant modification. The ALAD Rsal, VDR Bsml and Taql polymorphisms modified the relationship between IQ and B-Pb. Hence, there is a fraction of the population, which is particularly sensitive to lead neurotoxicity. (C) 2011 Elsevier Inc. All rights reserved.

Publishing year

2012

Language

English

Pages

37-43

Publication/Series

NeuroToxicology

Volume

33

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Environmental Health and Occupational Health

Keywords

  • Central nervous system
  • Neurotoxicity
  • Polymorphism
  • Lead
  • IQ
  • Gene-environment interaction

Status

Published

ISBN/ISSN/Other

  • ISSN: 1872-9711