The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Auto-tuning Interactive Ray Tracing using an Analytical GPU Architecture Model

Author

Summary, in English

This paper presents a method for auto-tuning interactive ray tracing on GPUs using a hardware model. Getting full performance from modern GPUs is a challenging task. Workloads which require a guaranteed performance over several runs must select parameters for the worst performance of all runs. Our method uses an analyti- cal GPU performance model to predict the current frame’s render- ing time using a selected set of parameters. These parameters are then optimised for a selected frame rate performance on the partic- ular GPU architecture. We use auto-tuning to determine parameters such as phong shading, shadow rays and the number of ambient oc- clusion rays. We sample a priori information about the current ren- dering load to estimate the frame workload. A GPU model is run iteratively using this information to tune rendering parameters for a target frame rate. We use the OpenCL API allowing tuning across different GPU architectures. Our auto-tuning enables the render- ing of each frame to execute in a predicted time, so a target frame rate can be achieved even with widely varying scene complexities. Using this method we can select optimal parameters for the cur- rent execution taking into account the current viewpoint and scene, achieving performance improvements over predetermined parame- ters.

Publishing year

2012

Language

English

Publication/Series

The ACM International Conference Proceedings Series

Document type

Conference paper

Topic

  • Computer Science

Keywords

  • GPU Model
  • Ray Tracing
  • Auto-tuning
  • OpenCL

Conference name

GPGPU5

Conference date

2012-03-03

Conference place

London, United Kingdom

Status

Published

Research group

  • Computer Graphics