The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Changing adsorption mode of FePc on TiO2(110) by surface modification with bipyridine

Author

  • P. Palmgren
  • S. Yu
  • Franz Hennies
  • K. Nilson
  • B. Akermark
  • M. Gothelid

Summary, in English

Surface modification of reactive oxide substrates to obtain a less strongly interacting template for dye adsorption may be a way to enhance performance in dye-sensitized solar cells. In this work, we have investigated the electronic and structural properties of 4,4(')-bipyridine (bipy) as modifier adsorbed on the TiO2(110) surface. The modified surface is then coated with iron phthalocyanine (FePc) and the properties of this heterostructure are investigated with synchrotron based photoelectron spectroscopy, x-ray absorption spectroscopy, and scanning tunneling microscopy. We find that a saturated monolayer consisting of standing bipy molecules with one nitrogen atom pointing outward is formed on the oxide surface. FePc adsorb in molecular chains along the [001] direction on top of bipy and ordered in a tilted arrangement with adjacent molecules partially overlapping. Already from the first layer, the electronic properties of FePc resemble those of multilayer films. FePc alone is oxidized on the TiO2(110) surface, but preadsorbed bipy prevents this reaction. The energy level lineup at the interface is clarified. (C) 2008 American Institute of Physics.

Department/s

Publishing year

2008

Language

English

Publication/Series

Journal of Chemical Physics

Volume

129

Issue

7

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0021-9606