The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Light intensity limits the foraging activity in nocturnal and crepuscular bees.

Author

Summary, in English

A crepuscular or nocturnal lifestyle has evolved in bees several times independently, probably to explore rewarding pollen sources without competition and to minimize predation and nest parasites. Despite these obvious advantages, only few bee species are nocturnal. Here we show that the sensitivity of the bee apposition eye is a major factor limiting the ability to forage in dim light. We present data on eye size, foraging times, and light levels for Megalopta genalis (Augochlorini, Halictidae) in Panama, and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae) in Utah, USA. M. genalis females forage exclusively during twilight, but as a result of dim light levels in the rain forest, they are adapted to extremely low intensities. The likely factor limiting their foraging activity is finding their nest entrance on return from a foraging trip. The lowest light intensity at which they can do this, both in the morning and the evening, is 0.0001 cd m–2. Therefore, they leave the nest at dimmer light levels in the morning than in the evening. Lasioglossum (Sphecodogastra) foraging is limited by light intensity in the evening, but probably by temperature in the morning in the temperate climate of Utah. We propose that the evolution of nocturnality in bees was favored by the large variance in the size of females.

Publishing year

2006

Language

English

Pages

63-72

Publication/Series

Behavioral Ecology

Volume

17

Issue

1

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Zoology

Keywords

  • insects
  • foraging
  • ocelli
  • visual ecology.
  • sensitivity
  • eyes
  • bees

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1045-2249