The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Consumer-resource matching in a food chain when both predators and prey are free to move

Author

Summary, in English

The classical theory of the ideal free distribution (IFD) predicts that the spatial distribution of consumers should follow the distribution of the resources they depend on. Here, we study consumer-resource matching in a community context. Our model for the community is a food chain with three levels. We study whether the primary consumers are able to match resources both under predation risk and in its absence. Both prey and predators have varying degrees of knowledge of the global and local resource distribution. We present two versions of the model. In the "resource maximising" model, the consumers consider the availability of their resource only. In the "balancing" model, individual consumers minimise predation risk per unit of resource that they can gain access to. We show that both models can lead to perfect matching of consumers on resources and predators on consumers, assuming that individuals have full knowledge of the whole environment. However, when the consumers' information and freedom of movement are greater than those of the predators, then the predators generally undermatch the consumers. In the opposite case, we observe overmatching and high consumer movement rates. Furthermore, undermatching of predators on consumers tends to induce overmatching of consumers on resources.

Publishing year

2004

Language

English

Pages

445-450

Publication/Series

Oikos

Volume

106

Issue

3

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences

Status

Published

Research group

  • Theoretical Population Ecology and Evolution Group

ISBN/ISSN/Other

  • ISSN: 1600-0706