The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Can pulsed ultrasound increase tissue damage during ischemia? A study of the effects of ultrasound on infarcted and non-infarcted myocardium in anesthetized pigs

Author

Summary, in English

BACKGROUND: The same mechanisms by which ultrasound enhances thrombolysis are described in connection with non-beneficial effects of ultrasound. The present safety study was therefore designed to explore effects of beneficial ultrasound characteristics on the infarcted and non-infarcted myocardium. METHODS: In an open chest porcine model (n = 17), myocardial infarction was induced by ligating a coronary diagonal branch. Pulsed ultrasound of frequency 1 MHz and intensity 0.1 W/cm2 (ISATA) was applied during one hour to both infarcted and non-infarcted myocardial tissue. These ultrasound characteristics are similar to those used in studies of ultrasound enhanced thrombolysis. Using blinded assessment technique, myocardial damage was rated according to histopathological criteria. RESULTS: Infarcted myocardium exhibited a significant increase in damage score compared to non-infarcted myocardium: 6.2 +/- 2.0 vs. 4.3 +/- 1.5 (mean +/- standard deviation), (p = 0.004). In the infarcted myocardium, ultrasound exposure yielded a further significant increase of damage scores: 8.1 +/- 1.7 vs. 6.2 +/- 2.0 (p = 0.027). CONCLUSION: Our results suggest an instantaneous additive effect on the ischemic damage in myocardial tissue when exposed to ultrasound of stated characteristics. The ultimate damage degree remains to be clarified.

Publishing year

2005

Language

English

Publication/Series

BMC Cardiovascular Disorders

Volume

5

Issue

8

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Cardiac and Cardiovascular Systems

Status

Published

ISBN/ISSN/Other

  • ISSN: 1471-2261