The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Gene expression analysis in induced sputum from welders with and without airway-related symptoms.

Author

Summary, in English

PURPOSE: To identify changes in gene expression in the airways among welders, with and without lower airway symptoms, working in black steel. METHODS: Included were 25 male, non-smoking welders. Each welder was sampled twice; before exposure (after vacation), and after 1 month of exposure. From the welders (14 symptomatic, of whom 7 had asthma-like symptoms), RNA from induced sputum was obtained for gene expression analysis. Messenger RNA from a subset of the samples (n = 7) was analysed with microarray technology to identify genes of interest. These genes were further analysed using quantitative PCR (qPCR; n = 22). RESULTS: By comparing samples before and after exposure, the microarray analysis resulted in several functional annotation clusters: the one with the highest enrichment score contained "response to wounding", "inflammatory response" and "defence response". Seven genes were analysed by qPCR: granulocyte colony-stimulating factor 3 receptor (CSF3R), superoxide dismutase 2, interleukin 8, glutathione S-transferase pi 1, tumour necrosis factor alpha-induced protein 6 (TNFAIP6), interleukin 1 receptor type II and matrix metallopeptidase 25 (MMP25). Increased levels of CSF3R, TNFAIP6 and MMP25 were indicated among asthmatic subjects compared to non-symptomatic subjects, although the differences did not reach significance. CONCLUSIONS: Workers' exposure to welding fumes changed gene expression in the lower airways in genes involved in inflammatory and defence response. Thus, microarray and qPCR technique can demonstrate markers of exposure to welding fumes and possible disease-related markers. However, further studies are needed to verify genes involved and to further characterise the mechanism for welding fumes-associated lower airway symptoms.

Publishing year

2011

Language

English

Pages

105-113

Publication/Series

International Archives of Occupational and Environmental Health

Volume

Okt

Document type

Journal article

Publisher

Springer

Topic

  • Environmental Health and Occupational Health

Status

Published

Research group

  • Family Medicine and Clinical Epidemiology

ISBN/ISSN/Other

  • ISSN: 1432-1246