The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Evolutionary transitions in enzyme activity of ant fungus gardens

Author

  • Henrik Hjarvard de Fine Licht
  • M. Schiøtt
  • U. G. Mueller
  • J.J. Boomsma

Summary, in English

Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

Publishing year

2010

Language

English

Pages

2055-2069

Publication/Series

Evolution

Volume

64

Issue

7

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences

Keywords

  • Decomposition
  • diffuse coevolution
  • fungus-growing ants
  • Leucocoprinus gongylophorus
  • mutualism

Status

Published

ISBN/ISSN/Other

  • ISSN: 1558-5646