The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Label-free somatic cell cytometry in raw milk using acoustophoresis.

Author

Summary, in English

A microfluidic system for cell enumeration in raw milk was developed. The new method, preconditions the milk sample using acoustophoresis that removes lipid particles which are larger than a few micrometers. The acoustophoretic preprocessing eliminates the need for conventional sample preparation techniques, which include chemical solvents, cell labeling and centrifugation, and facilitates rapid cell enumeration using microscopy or coulter counter measurements. By introducing an acoustic standing wave with three pressure nodes in a microchannel at the same time as the milk sample is laminated to the channel center, lipids are acoustically driven to the closest pressure antinode at each side of the channel center and the cells in the milk sample are focused in the central pressure node. The extracted center fraction with cells becomes sufficiently clean from lipid vesicles to enable enumeration of somatic cells without any labeling step either by direct light microscopy or by coulter counting. Obtained lipid free milk fractions clearly revealed the cell fraction when analyzed by Coulter Counting. Cell counting as measured by a Coulter Counter after acoustophoretic lipid depletion aligned with the corresponding data obtained by reference measurements based on fluorescence staining and subsequent flow cytometer analysis. © 2012 International Society for Advancement of Cytometry.

Department/s

Publishing year

2012

Language

English

Pages

1076-1083

Publication/Series

Cytometry Part A

Volume

81A

Issue

12

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Cell and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1552-4930