The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Single-electron tunneling effects in a metallic double dot device

Author

Summary, in English

We report on differential conductance measurements on a gold double-dot structure at 4.2 K. The two dots were connected in series by tunnel junctions formed by atomic force microscopy manipulation of nanodisks. The tunnel junctions were made strongly asymmetric. The characteristic honeycomb-shaped charging diagram separating different Coulomb blockade regions of well-defined occupancy of electrons was observed and the cells in the charging diagram were found to be skewed by the asymmetry of the tunnel junctions. In addition, a double-dot Coulomb staircase structure, with steps of varying width, was observed and was studied for varying gate voltage. The occupancy of electrons on the two dots was determined as a function of both drain source and gate voltages.

Publishing year

2002

Language

English

Pages

667-669

Publication/Series

Applied Physics Letters

Volume

80

Issue

4

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0003-6951