The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1

Author

  • Kristin Stock
  • Jitender Kumar
  • Michael Synowitz
  • Stefania Petrosino
  • Roberta Imperatore
  • Ewan St J. Smith
  • Peter Wend
  • Bettina Purfuerst
  • Ulrike Nuber
  • Ulf Gurok
  • Vitali Matyash
  • Joo-Hee Waelzlein
  • Sridhar R. Chirasani
  • Gunnar Dittmar
  • Benjamin F. Cravatt
  • Stefan Momma
  • Gary R. Lewin
  • Alessia Ligresti
  • Luciano De Petrocellis
  • Luigia Cristino
  • Vincenzo Di Marzo
  • Helmut Kettenmann
  • Rainer Glass

Summary, in English

Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics.

Department/s

Publishing year

2012

Language

English

Pages

1232-1232

Publication/Series

Nature Medicine

Volume

18

Issue

8

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Cell and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1546-170X