The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Neurite guidance on protein micropatterns generated by a piezoelectric microdispenser

Author

Summary, in English

In this study, we developed a microdispenser technique in order to create protein patterns for guidance of neurites from cultured adult mouse dorsal root ganglia (DRG). The microdispenser is a micromachined silicon device that ejects 100 picolitre droplets and has the ability to position the droplets with a precision of 6-8 mu m. Laminin and bovine serum albumin (BSA) was used to create adhesive and non-adhesive protein lines on polystyrene surfaces (cell culture dishes). Whole-mounted DRGs were then positioned close to the patterns and neurite outgrowth was monitored. The neurites preferred to grow on laminin lines as compared to the unpatterned plastic. When patterns were made from BSA the neurites preferred to grow in between the lines on the unpatterned plastic surface. We conclude that microdispensing can be used for guidance of sensory neurites. The advantages of microdispensing is that it is fast, flexible, allows deposition of different protein concentrations and enables patterning on delicate surfaces due to its non-contact mode of operation. It is conceivable that microdispensing can be utilized for the creation of protein patterns for guiding neurites to obtain in vitro neural networks, in tissue engineering or rapid screening for guiding proteins. (c) 2006 Elsevier Ltd. All rights reserved.

Publishing year

2007

Language

English

Pages

1141-1151

Publication/Series

Biomaterials

Volume

28

Issue

6

Document type

Journal article

Publisher

Elsevier

Topic

  • Bioengineering Equipment

Keywords

  • protein
  • nerve regeneration
  • micropatterning
  • nerve tissue engineering
  • cell adhesion

Status

Published

Research group

  • Neural Interfaces

ISBN/ISSN/Other

  • ISSN: 1878-5905