The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Cations Strongly Reduce Electron-Hopping Rates in Aqueous Solutions

Author

  • Niklas Ottosson
  • Michael Odelius
  • Daniel Spangberg
  • Wandared Pokapanich
  • Mattias Svanqvist
  • Gunnar Öhrwall
  • Bernd Winter
  • Olle Bjorneholm

Summary, in English

We study how the ultrafast intermolecular hopping of electrons excited from the water O1s core level into unoccupied orbitals depends on the local molecular environment in liquid water. Our probe is the resonant Auger decay of the water O1s core hole (lifetime similar to 3.6 fs), by which we show that the electron-hopping rate can be significantly reduced when a first-shell water molecule is replaced by an atomic ion. Decays resulting from excitations at the O1s post-edge feature (similar to 540 eV) of 6 m LiBr and 3 m MgBr2 aqueous solutions reveal electron-hopping times of similar to 1.5 and 1.9 fs, respectively; the latter represents a 4-fold increase compared to the corresponding value in neat water. The slower electron-hopping in electrolytes, which shows a strong dependence on the charge of the cations, can be explained by ion-induced reduction of water-water orbital mixing. Density functional theory electronic structure calculations of solvation geometries obtained from molecular dynamics simulations reveal that this phenomenon largely arises from electrostatic perturbations of the solvating water molecules by the solvated ions. Our results demonstrate that it is possible to deliberately manipulate the rate of charge transfer via electron-hopping in aqueous media.

Department/s

Publishing year

2011

Language

English

Pages

13489-13495

Publication/Series

Journal of the American Chemical Society

Volume

133

Issue

34

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5126