The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.

Author

Summary, in English

Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.

Publishing year

2012

Language

English

Pages

2745-2748

Publication/Series

Journal of the Royal Society Interface

Volume

9

Issue

75

Document type

Journal article

Publisher

The Royal Society of Canada

Topic

  • Zoology
  • Biological Sciences

Keywords

  • beetles
  • flight
  • aerodynamics

Status

Published

Research group

  • Lund Vision Group
  • Animal Flight Lab

ISBN/ISSN/Other

  • ISSN: 1742-5662