The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation

Author

  • Qiuqiang Zhan
  • Jun Qian
  • Huijuan Liang
  • Gabriel Somesfalean
  • Dan Wang
  • Sailing He
  • Zhiguo Zhang
  • Stefan Andersson-Engels

Summary, in English

Successful further development of superhigh-constrast upconversion (UC) bioimaging requires addressing the existing paradox: 980 nm laser light is used to excite upconversion nanoparticles (UCNPs), while 980 nm light has strong optical absorption of water and biological specimens. The overheating caused by 980 nm excitation laser light in UC bioimaging is computationally and experimentally investigated for the first time. A new promising excitation approach for better near-infrared to near-infrared (NIR-to-NIR) UC photoluminescence in vitro or in vivo imaging is proposed employing a cost-effective 915 nm laser. This novel laser excitation method provides drastically less heating of the biological specimen and larger imaging depth In the animals or tissues due to quite low water absorption. Experimentally obtained thermal-graphic maps of the mouse in response to the laser heating are investigated to demonstrate the less heating advantage of the 915 nm laser. Our tissue phantom experiments and simulations verified that the 915 nm laser is superior to the 980 nm laser for deep tissue imaging. A novel and facile strategy for surface functionalization is utilized to render UCNPs hydrophilic, stable, and cell targeting. These as-prepared UCNPs were characterized by TEM, emission spectroscopy, XRD, FTIR, and zeta potential. Specifically targeting UCNPs excited with a 915 nm laser have shown very high contrast UC bioimaging. Highly stable DSPE-mPEG-5000-encapsulated UCNPs were injected into mice to perform in vivo imaging. Imaging and spectroscopy analysis of UC photoluminescence demonstrated that a 915 nm laser can serve as a new promising excitation light for UC animal imaging.

Department/s

Publishing year

2011

Language

English

Pages

3744-3757

Publication/Series

ACS Nano

Volume

5

Issue

5

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Nano Technology

Keywords

  • upconversion nanoparticles
  • bioimaging
  • deep imaging
  • overheating free
  • near-infrared

Status

Published

Research group

  • Biophotonics

ISBN/ISSN/Other

  • ISSN: 1936-086X