The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A high-density putative monomeric mucin is the major [(35)S]labelled macromolecular product of human colorectal mucins in organ culture.

Author

  • Annkatrin Herrmann
  • Ingemar Carlstedt
  • Tarek Shirazi
  • Robert Longman
  • Anthony Corfield

Summary, in English

We have studied the biosynthesis of mucins in organ cultures of human colon using isopycnic density-gradient centrifugation following pulse labelling with [35S]sulphate and [3H]-D-glucosamine. A high-density [35S]sulphate labelled component, of larger size than MUC2 monomers, appeared in the tissue and also in the medium. It was not degraded by reduction, trypsin digestion, digestion with chondroitin ABC lyase or heparan sulphate III lyase, but was cleaved into smaller fragments following alkaline borohydride treatment and appears to be a monomeric, mucin-like molecule containing a protease-resistant domain with a larger hydrodynamic volume than MUC2 monomers. Although this macromolecule incorporated much more radiolabel than MUC2, it was not detected using chemical analysis and thus appears to be a component with a high metabolic turnover present in a very small amount. Most of the [3H]-D-glucosamine label was associated with low-density material that was well separated from MUC2, which was poorly labelled. Most of MUC2 was associated with the tissue as an ‘insoluble’ complex. The amount of MUC2 remained constant and its associated radiolabel increased only slightly with time. Analysis of the MUC2 subunits from the reduced ‘insoluble’ complex showed the typical reduction-insensitive oligomers and confirmed that the radiolabel was associated with this mucin. The large size of the [35S]-labelled putative monomeric mucin makes it difficult to separate it from reduced insoluble complex MUC2. As a result, many studies of intestinal mucin synthesis and secretion in the past have most likely been performed on ‘mixtures’ of this mucin and MUC2 and are thus not possible to interpret as the metabolic behaviour of oligomeric mucins.

Topic

  • Biochemistry and Molecular Biology

Keywords

  • Organ culture
  • Human colon
  • MUC2
  • Mucin

Status

Published

ISBN/ISSN/Other

  • ISSN: 1638-6183