The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Acoustic control of suspended particles in micro fluidic chips

Author

Summary, in English

A method to separate suspended particles from their medium in a continuous mode at microchip level is described. The method combines an ultrasonic standing wave field with the extreme laminar flow properties obtained in a silicon micro channel. The channel was 750 mum wide and 250 mum deep with vertical side walls defined by anisotropic wet etching. The suspension comprised "Orgasol 5mum" polyamide spheres and distilled water. The channel was perfused by applying an under pressure ( suction) to the outlets. The channel was ultrasonically actuated from the back side of the chip by a piezoceramic plate. When operating the acoustic separator at the fundamental resonance frequency the acoustic forces were not strong enough to focus the particles into a well defined single band in the centre of the channel. The frequency was therefore changed to about 2 MHz, the first harmonic with two pressure nodes in the standing wave, and consequently two lines of particles were formed which were collected via the side outlets. Two different microchip separator designs were investigated with exit channels branching off from the separation channel at angles of 90degrees and 45degrees respectively. The 45degrees separator displayed the most optimal fluid dynamic properties and 90% of the particles were gathered in 2/3 of the original fluid volume.

Publishing year

2004

Language

English

Pages

131-135

Publication/Series

Lab on a Chip

Volume

4

Issue

2

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Medical Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1473-0189