The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Restricted mesh simplification using edge contractions

Author

Summary, in English

We consider the problem of simplifying a planar triangle mesh using edge contractions, under the restriction that the resulting vertices must be a subset of the input set. That is, contraction of an edge must be made on to one of its adjacent vertices, which results in removing the other adjacent vertex. We show that if the perimeter of the mesh consists of at most five vertices, then we can always find a vertex not on the perimeter which can be removed in this way. If the perimeter consists of more than five vertices such a vertex may not exist. In order to maintain a higher number of removable vertices under the above restriction, we study edge flips which can be performed in a visually smooth way. A removal of a vertex which is preceded by one such smooth operation is called a 2-step removal. Moreover, we introduce the possibility that the user defines "important" vertices (or edges) which have to remain intact. Given m such important vertices, or edges, we show that a simplification hierarchy of size O(n) and depth O(log(n/m))can be constructed by 2-step removals in O(n) time, such that the simplified graph contains the m important vertices and edges, and at most O(m) other vertices from the input graph. In some triangulations, many vertices may not even be 2-step removable. In order to provide the option to remove such vertices, we also define and examine k-step removals. This increases the lower bound on the number of removable vertices.

Department/s

  • Computer Science

Publishing year

2009

Language

English

Pages

247-265

Publication/Series

International Journal of Computational Geometry and Applications

Volume

19

Issue

3

Document type

Journal article

Publisher

World Scientific Publishing

Topic

  • Computer Science

Keywords

  • edge contractions
  • Computational geometry
  • computer graphics

Status

Published

Project

  • VR 2008-4649

ISBN/ISSN/Other

  • ISSN: 0218-1959