The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A priori modeling for gradient based inverse scattering algorithms

Author

Summary, in English

This paper presents a Fisher information based Bayesian approach to analysis and design of the regularization and preconditioning parameters used with gradient based inverse scattering algorithms. In particular, a one-dimensional inverse problem is considered where the permittivity and conductivity profiles are unknown and the input data consist of the scattered field over a certain bandwidth. A priori parameter modeling is considered with linear, exponential and arctangential parameter scalings and robust preconditioners are obtained by choosing the related scaling parameters based on a Fisher information analysis of the known background. The Bayesian approach and a principal parameter (singular value) analysis of the stochastic Cramer-Rao bound provide a natural interpretation of the regularization that is necessary to achieve stable inversion, as well as an indicator to predict the feasibility of achieving successful reconstruction in a given problem set-up. In particular, the Tikhonov regularization scheme is put into a Bayesian estimation framework. A time-domain least-squares inversion algorithm is employed which is based on a quasi-Newton algorithm together with an FDTD-electromagnetic solver. Numerical examples are included to illustrate and verify the analysis.

Publishing year

2009

Language

English

Pages

407-432

Publication/Series

Progress In Electromagnetics Research B

Volume

16

Document type

Journal article

Publisher

Electromagnetics Academy

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

Research group

  • Electromagnetic theory

ISBN/ISSN/Other

  • ISSN: 1937-6472