The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response

Author

  • Mattias K. Andersson
  • Anders Stahlberg
  • Yvonne Arvidsson
  • Anita Olofsson
  • Henrik Semb
  • Goran Stenman
  • Ola Nilsson
  • Pierre Aman

Summary, in English

Background: FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET ( previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. Results: FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. Conclusion: Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.

Department/s

Publishing year

2008

Language

English

Publication/Series

BMC Cell Biology

Volume

9

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Cell and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1471-2121