The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A New Method of Determining Moisture Flow Coefficients for both Isothermal and Non-isothermal Conditions

Author

Editor

  • Carsten Rode

Summary, in English

The calculation of isothermal moisture transport requires a moisture flow coefficient, Dφ(φ,T), for isothermal flow with φ as the moisture state variable. In the non-isothermal case, a second flow coefficient, DTφ(φ,T), is required to account for the temperature gradient. This means that a number of isothermal measurements are required for a few different temperature levels. It also means that a corresponding second set of measurements with temperature gradients are required.

This paper presents a new method of determining these flow coefficients for a set of moisture states and temperature levels. This is accomplished by measuring the change in mass over time as the sample absorbs or desorbs moisture. The sample is sealed and thermally insulated on all but one side with a heating pad at the top of the sample (within the insulation). This assembly is hung from a balance in a climate box that has a controlled temperature and relative humidity. The sample is exposed to a step-wise change in relative humidity and the change in mass over time is recorded. Care is taken to ensure that the sample is either absorbing or desorbing moisture in order to avoid complications with hysteresis. In the isothermal case, the sample is kept at a constant temperature during the measurements. In the non-isothermal case the sample has a known temperature gradient set by the temperature of the heating pad and the temperature of the climate box. The moisture flow coefficients are obtained from an analysis of the transient changes in mass.

The method and the ideas upon which it is based are presented. A few preliminary results, and technical difficulties encountered during the experimental development, are reported.

Publishing year

2008

Language

English

Pages

975-982

Publication/Series

Proceedings of the 8th Symposium on Building Physics in the Nordic Countries

Volume

2

Document type

Conference paper

Publisher

Department of Civil Engineering, Technical University of Denmark

Topic

  • Building Technologies

Keywords

  • moisture transport
  • isothermal
  • phenomenological
  • experimental
  • non-isothermal

Conference name

8th Symposium on Building Physics in the Nordic Countries, 2008

Conference date

2008-06-16 - 2008-06-18

Conference place

Copenhagen, Denmark

Status

Published

ISBN/ISSN/Other

  • ISBN: 978-87-7877-265-7