The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Acidic proteome of growing and resting Lactococcus lactis metabolizing maltose

Author

Summary, in English

The acidic proteome of Lactococcus lactis grown anaerobically was compared for three different growth conditions: cells growing on maltose, resting cells metabolizing maltose, and cells growing on glucose. In maltose metabolizing cells several proteins were up-regulated compared with glucose metabolizing cells, however only some of the up-regulated proteins had apparent relation to maltose metabolism. Cells growing on maltose produced formate, acetate and ethanol in addition to lactate, whereas resting cells metabolizing maltose and cells growing on glucose produced only lactate. Increased levels of alcohol-acetaldehyde dehydrogenase (ADH) and phosphate acetyltransferase (PTA) in maltose-growing cells compared with glucose-growing cells coincided with formation of mixed acids in maltose-growing cells. The resting cells did not grow due to lack of an amino acid source and fermented maltose with lactate as the sole product, although ADH and PTA were present at high levels. The maltose consumption rate was approximately three times lower in resting cells than in exponentially growing cells. However, the enzyme levels in resting and growing cells metabolizing maltose were similar, which indicates that the difference in product formation in this case is due to regulation at the enzyme level. The levels of 30S ribosomal proteins S1 and S2 increased with increasing growth rate for resting cells metabolizing maltose, maltose-growing cells and glucose-growing cells. A modified form of HPr was synthesized under amino acid starvation. This is suggested to be due to alanine misincorporation for valine, which L. lactis is auxotrophic for. L. lactis conserves the protein profile to a high extent, even after prolonged amino acid starvation, so that the protein expression profile of the bacterium remains almost invariant.

Publishing year

2004

Language

English

Pages

3881-3898

Publication/Series

Proteomics

Volume

4

Issue

12

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Medical Engineering
  • Industrial Biotechnology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1615-9861