Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Historical climate important for soil responses to future climate change

Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet. The results show that this type of extreme weather determines how soils respond to future climate change.
The long-term drought experiment in the Netherlands from where the soils were sampled. A rain curtain has excluded precipitation from entering the soil during the summer for 18 years, simulating the drought. (Photo: Evy de Nijs)
The long-term drought experiment in the Netherlands from where the soils were sampled. A rain curtain has excluded precipitation from entering the soil during the summer for 18 years, simulating the drought. (Photo: Evy de Nijs)

According to the study, microorganisms that have been subjected to long-term drought find it easier than other microbes to recover when moisture in the soil increases again.

“Our results show that the historical climate will affect how microorganisms respond and contribute to climate change in the future. Bacteria adapted to drought could slow the rate of carbon loss from soils”, explains Lettice Hicks, biologist at Lund University.

The long-term drought experiment in the Netherlands from where the soils were sampled. A rain curtain has excluded precipitation from entering the soil during the summer for 18 years, simulating the drought. (Photo: Evy de Nijs)
The long-term drought experiment in the Netherlands from where the soils were sampled. A rain curtain has excluded precipitation from entering the soil during the summer for 18 years, simulating the drought. (Photo: Evy de Nijs)

In the study, she and her colleagues examined soil that had been subjected to long-term drought – in this case 18 years of experimental summer drought. The aim was to study how the microorganisms cope and how they recover.

When the soil is moist, the bacteria are active, breaking down organic material. This process provides essential nutrients for plants, and, while a proportion of the carbon from organic matter is stored in the soil as bacterial tissue, some is released into the air as carbon dioxide.

During drought, however, the bacteria stop growing and no longer perform their important task in the ecosystem. When rain eventually falls and the soil regains moisture, the bacteria begin to work again. The result is an immediate increase in emissions of carbon dioxide into the air, but as the bacteria recover very quickly, the fraction of carbon released from the soil decreases.

“The carbon balance is affected, as the growth of bacteria keeps carbon in the soil. These findings suggest that microbial communities can adapt to changing climatic conditions, and this might slow the rate of carbon loss from soils”, concludes Lettice Hicks.

Publication:
Soil microbial moisture dependences and responses to drying‐rewetting: the legacy of 18 years drought

Contact:
Lettice Hicks, researcher
Department of Biology, Lund University
+46 46 222 37 63
lettice [dot] hicks [at] biol [dot] lu [dot] se

Categories

Latest news

14 December 2018

Intact mass grave discovered at ancient Egyptian site

Intact mass grave discovered at ancient Egyptian site
13 December 2018

The immune system’s supercell – how it matures

The immune system’s supercell – how it matures
12 December 2018

More “heatwave” summers will affect animals

More “heatwave” summers will affect animals
10 December 2018

Lund and four other major research universities create a European Alliance for Global Health

Lund and four other major research universities create a European Alliance for Global Health
7 December 2018

WATCH: A code for reprogramming immune sentinels

WATCH: A code for reprogramming immune sentinels