The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings

Author

  • Alwyn Williams
  • Hayley J. Rigdway
  • David A. Norton

Summary, in English

There is growing interest in the use of arbuscular mycorrhizal fungi (AMF) for ecological restoration. Numerous commercial AMF products are now available and are often used in preference to collecting indigenous AMF in treating restoration plants. Commercial AMF products are typically based on AMF strains exotic to the plant species and locations where they are used. We treated rooted cuttings of an endemic New Zealand tree species (Podocarpus cunninghamii) and an exotic and invasive grass (Agrostis capillaris) with an indigenous, pot-cultured AMF (Acaulospora laevis) and an exotic commercial AMF product (Glomus spp.). P. cunninghamii was grown in monoculture and together with A. capillaris, the latter to simulate field competition that often occurs in restoration plantings. In monoculture, the indigenous AMF resulted in significant increases in P. cunninghamii growth rates and tissue concentrations of both nitrogen and phosphorus. The commercial AMF had either no effect or a negative effect on P. cunninghamii growth and nutrient levels. A. capillaris growth and nutrient status were unaffected by the different AMF treatments. Competition eliminated any AMF benefit for P. cunninghamii. The results show that, for our chosen indigenous woody plant species, the commercially available AMF did not improve its early growth and nutrient acquisition in monoculture while, over the same period, the indigenous AMF induced positive growth and nutrient responses. These results have potential implications for forest restoration, particularly for nursery production of indigenous woody species.

Publishing year

2013

Language

English

Pages

183-195

Publication/Series

New Forests

Volume

44

Document type

Journal article

Publisher

Springer

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0169-4286