The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxalate- and Squarate-Biimidazole Supramolecular Synthons: Hydrogen-Bonded Networks Based on [Co(H(2)biimidazole)(3)](3+)

Author

  • Cedric Borel
  • Krister Larsson
  • Mikael Hakansson
  • Bjorn E. Olsson
  • Andrew D. Bond
  • Lars Ohrstrom

Summary, in English

The utility of R-2(2)(9) biimidazole-carboxylate, R-2(2)(10) biimidazole-oxalate/squarate and R-2(2) (9) biimidazole-(tris-oxalate) synthons is considered for crystal engineering of hydrogen-bonded networks based on [Co-III(H(2)biim)(3)](3+) cations (H(2)biim = 2,2-biimidazole) and oxalate, squarate or [M-III(C2O4)(3-) anions. Syntheses and crystal structures are described for [Co-III(H(2)biim)(3)](3-) [M-III(C2O4)(3)]center dot 2H(2)O (M = Cr, 1; M = Co, 2), [Co-III(H(2)biim)(3)](HC4O4)(3)center dot 2H(2)O, 3, and [Co-III(H(2)biim)(3)](C2O4)Cl center dot 5.5H(2)O, 4. Compounds 1 and 2 are isostructural and comprise [Co(H(2)biim)(3)](3+) cations bridged by [M(oxalate)(3)](3-) anions in two directions and water molecules in the third direction to give a 3D H-bonded network. Both outer and inner 0 atoms of the coordinated oxalate ions act as H-bond acceptors, forming motifs closely related to the anticipated R-2(2)(9) biimidazole-(tris-oxalate) synthon. Compound 3 contains a more complex H-bond pattern in 3D, built from the intended R-2(2)(10) biimidazole-squarate synthon and additional H-bonds between protonated squarate molecules and water molecules. The structure of compound 4 (obtained with synchrotron radiation) contains layers in which stacked pairs of oxalate anions bridge between [Co-III(H(2)biim)(3)](3+) cations to form a dense 2D kgd-net, separated by layers of disordered chloride anions and H-bonded water molecules.

Department/s

Publishing year

2009

Language

English

Pages

2821-2827

Publication/Series

Crystal Growth & Design

Volume

9

Issue

6

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Sciences
  • Natural Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1528-7483