The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Exhaustive percolation on random networks

Author

  • Björn Samuelsson
  • Joshua E. S. Socolar

Summary, in English

We consider propagation models that describe the spreading of an attribute, called “damage,” through the nodes of a random network. In some systems, the average fraction of nodes that remain undamaged vanishes in the large system limit, a phenomenon we refer to as exhaustive percolation. We derive scaling law exponents and exact results for the distribution of the number of undamaged nodes, valid for a broad class of random networks at the exhaustive percolation transition and in the exhaustive percolation regime. This class includes processes that determine the set of frozen nodes in random Boolean networks with indegree distributions that decay sufficiently rapidly with the number of inputs. Connections between our calculational methods and previous studies of percolation beginning from a single initial node are also pointed out. Central to our approach is the observation that key aspects of damage spreading on a random network are fully characterized by a single function specifying the probability that a given node will be damaged as a function of the fraction of damaged nodes. In addition to our analytical investigations of random networks, we present a numerical example of exhaustive percolation on a directed lattice.

Publishing year

2006

Language

English

Publication/Series

Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)

Volume

74

Issue

3

Document type

Journal article

Publisher

American Physical Society

Topic

  • Zoology
  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1539-3755