The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Leading edge vortex improves lift in slow-flying bats

Author

Summary, in English

Staying aloft when hovering and flying slowly is demanding. According to quasi-steady-state aerodynamic theory, slow-flying vertebrates should not be able to generate enough lift to remain aloft. Therefore, unsteady aerodynamic mechanisms to enhance lift production have been proposed. Using digital particle image velocimetry, we showed that a small nectar-feeding bat is able to increase lift by as much as 40% using attached leading-edge vortices (LEVs) during slow forward flight, resulting in a maximum lift coefficient of 4.8. The airflow passing over the LEV reattaches behind the LEV smoothly to the wing, despite the exceptionally large local angles of attack and wing camber. Our results show that the use of unsteady aerodynamic mechanisms in flapping flight is not limited to insects but is also used by larger and heavier animals.

Publishing year

2008

Language

English

Pages

1250-1253

Publication/Series

Science

Volume

319

Issue

5867

Document type

Journal article

Publisher

American Association for the Advancement of Science (AAAS)

Topic

  • Biological Sciences

Status

Published

Research group

  • Animal Flight Lab

ISBN/ISSN/Other

  • ISSN: 1095-9203