The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The nitrogen fixation potential of arctic cryptogram species is influenced by enhanced UV-B radiation

Author

  • Bjørn Solheim
  • Ulf Johanson
  • Terry V. Callaghan
  • John A. Lee
  • Dylan Gwynn-Jones
  • Lars Olof Björn

Summary, in English

Abstract. Effects of enhanced UV-B (representing a 15% ozone depletion) on cyanobacterial nitrogen fixation were measured at a high arctic site (Adventdalen, 79°N, Svalbard) and a subarctic site (Abisko, 68°N, Sweden). Nitrogen fixation potential (acetylene reduction) by cyanobacteria associated with the moss Sanionia uncinata in vegetation exposed to experimentally enhanced levels of UV-B for 3 and 4 years in the high arctic in Adventdalen was reduced by 50% compared to controls after 3 years. No reduction in nitrogen fixation potential was observed in cyanobacteria associated with the moss Hylocomium splendens when previously exposed to enhanced UV-B in Abisko for a 7-year period. However, in the same experiment a 50% increase in summer precipitation stimulated nitrogen fixation potential by up to 6-fold above the natural precipitation treatments both in cyanobacteria associated with vegetation exposed to natural and enhanced UV-B radiation. In contrast to the lack of UV effect on moss-associated nitrogen fixation at the subarctic site, nitrogen fixation potential by the dominant lichen species Peltigera aphthosa was reduced by 50% when measured after 8 years exposure to elevated UV-B treatment. Evidence from these studies highlights the importance of UV-B radiation for cyanobacterial nitrogen fixation in the Arctic and future impact on nitrogen availability in such plant communities.

Publishing year

2002

Language

English

Pages

90-93

Publication/Series

Oecologia

Volume

133

Issue

1

Document type

Journal article

Publisher

Springer

Topic

  • Biological Sciences

Status

Published

Project

  • Photobiology

Research group

  • Photobiology

ISBN/ISSN/Other

  • ISSN: 1432-1939