The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Ultrafast dynamics of singlet-singlet and singlet-triplet exciton annihilation in poly(3-2 '-methoxy-5 '-octylphenyl)thiophene films

Author

Summary, in English

Singlet-singlet (S-S) and singlet-triplet (S-T) exciton annihilation was studied in poly(3-2(')-methoxy-5(')octylphenyl)thiophene films. For the S-S exciton annihilation studies, transient absorption spectroscopy at excitation laser pulse fluences of 1.2x10(13)-4.4x10(14) photons/cm(2) and 2.5 kHz pulse repetition rate was applied. The obtained kinetics demonstrate a typical nonexponential character with intensity-dependent amplitudes and lifetimes. In time-resolved fluorescence experiments, low excitation pulse fluences of 1.6x10(9)-2.2x10(12) photons/cm(2) at high repetition rates of 0.4, 0.8, 4, and 81 MHz lead to S-T exciton annihilation as a result of triplet exciton accumulation. S-T annihilation kinetics results in monoexponential decay of the fluorescence kinetics and manifests itself as a decrease of the singlet exciton lifetime. The calculated time-independent S-S and S-T exciton annihilation rates strongly support the conclusion that the processes are controlled by the interchain diffusion of singlet excitons. Despite the low efficiency of S-T annihilation compared to that of S-S annihilation, it has a substantial effect on the singlet exciton lifetime due to a relatively long triplet lifetime (60 mu s). Thus, even optical excitation with low fluence at high pulse repetition rate creates a significant concentration of triplet states that efficiently quenches singlet excitons.

Department/s

Publishing year

2007

Language

English

Publication/Series

Physical Review B (Condensed Matter and Materials Physics)

Volume

75

Issue

19

Document type

Journal article

Publisher

American Physical Society

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1098-0121