The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Theoretical investigation of rectangular patch antenna miniaturization based on the DPS-ENG bi-layer super slow TM wave

Author

  • Jiang Xiong
  • Hui Li
  • Bingzhong Wang
  • Yi Jin
  • Sailing He

Summary, in English

The TM0 surface mode in an infinitely long parallel-plate waveguide filled with a double-positive (DPS) and epsilon-negative (ENG) metamaterial bi-layer is studied. With proper constitutive parameters and thicknesses of the two layers, the slow-wave factor (SWF) for such a parallel-plate waveguide can tend to infinity as the frequency decreases. A 2-D cavity based on the DPS-ENG bi-layer waveguide is constructed and studied to evaluate the radiation ability of its corresponding patch antenna. Based on the cavity model analysis of patch antennas, we show that good efficiency for broadside radiation of such a cavity-based rectangular patch antenna can be achieved when one layer of the cavity is shielded (or partially shielded) by PEC boundaries. Taking practical loss and dispersion into consideration, a miniaturized cavity-based rectangular patch antenna is proposed as an example. With the super-slow TM0 surface mode excited in the bi-layer by a simple coaxial line feeding, the antenna has a dimension of only 0.107λ0×0.129λ0×0.045λ0. The patch antenna produces broadside radiation, and fairly good radiation efficiency is achieved. The PEC-Partially-Shielded-ENG-Cavity based rectangular patch antenna with a further miniaturization but reduced radiation efficiency is also discussed.

Publishing year

2011

Language

English

Pages

379-396

Publication/Series

Progress in Electromagnetics Research-Pier

Volume

118

Document type

Journal article

Publisher

EMW Publishing

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

Research group

  • Radio Systems

ISBN/ISSN/Other

  • ISSN: 1070-4698