The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity.

Author

Summary, in English

Nematophagous fungi are soil-living fungi that are used as biological control agents of plant and animal parasitic nematodes. Their potential could be improved by genetic engineering, but the lack of information about the molecular background of the infection has precluded this development. In this paper we report that a subtilisin-like extracellular serine protease designated PII is an important pathogenicity factor in the common nematode-trapping fungus Arthrobotrys oligospora. The transcript of PII was not detected during the early stages of infection (adhesion and penetration), but high levels were expressed concurrent with the killing and colonization of the nematode. Disruption of the PII gene by homologous recombination had a limited effect on the pathogenicity of the fungus. However, mutants containing additional copies of the PII gene developed a higher number of infection structures and had an increased speed of capturing and killing nematodes compared to the wild type. The paralyzing activity of PII was verified by demonstrating that a heterologous-produced PII (in Aspergillus niger) had a nematotoxic activity when added to free-living nematodes. The toxic activity of PII was significantly higher than that of other commercially available serine proteases. This is the first report showing that genetic engineering can be used to improve the pathogenicity of a nematode-trapping fungus. In the future it should be possible to express recombinant subtilisins with nematicidal activity in other organisms that are present in the habitat of parasitic nematodes (e.g., host plant).

Publishing year

2002

Language

English

Pages

3408-3415

Publication/Series

Applied and Environmental Microbiology

Volume

68

Issue

7

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Biological Sciences

Keywords

  • Nematoda : physiology
  • Nematoda : microbiology
  • Animal
  • Ascomycota : genetics
  • Ascomycota : physiology
  • Genetic Engineering
  • Hydrolysis
  • Nematoda : drug effects
  • Mutation
  • Recombinant Proteins : metabolism
  • Soil Microbiology
  • Subtilisin : genetics
  • Subtilisin : pharmacology
  • Subtilisin : physiology

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0099-2240