The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Strain effects in perovskite manganites

Author

  • Anthony Arulraj
  • Robert E. Dinnebier
  • Stefan Carlson
  • Michael Hanfland
  • Sander van Smaalen

Summary, in English

Colossal magnetoresistance (CMR) - the dramatic reduction of electrical resistivity in a magnetic field and charge ordering (CO) in rare earth manganites of the type Ln(1-x)A(x)MnO(3) [Ln: rare earth, A: divalent cation] are manifestations of the intricate relation between orbital, spin, charge and lattice degrees of freedom. Recent studies indicate that the inhomogeneous state of mixed-valence manganites - evidenced by the presence of texture and multiple phase coexistence - is important for the CMR property of manganites. Theoretical models that explain the multiphase coexistence are based on quenched disorder or strain. Here we show that lattice strain due to the Jahn-Teller (IT) distortions of MnO6 octahedra and their tilt rotations are not sufficient to provide a unique structure-property relation. We present evidence that the science of manganites should take into account shear distortions of the MnO6 octahedra as well. Pressure evolution of the lattice strain of Nd0.5Ca0.5MnO3 shows a minimum around 7 GPa, with the same lattice strain above and below this pressure achieved by shear- and JT-type distortions, respectively. In general, a particular lattice strain of manganites can be achieved by different combinations of JT-type and shear-type distortions of the MnO6 octahedra, together with their tilts, which suggest a plausible description of the inhomogeneous state in manganites as one where phases with differently distorted states having the same lattice strain are preserved. (C) 2007 Published by Elsevier Ltd.

Department/s

Publishing year

2007

Language

English

Pages

367-377

Publication/Series

Progress in Solid State Chemistry

Volume

35

Issue

2-4

Document type

Journal article

Publisher

Elsevier

Topic

  • Natural Sciences
  • Physical Sciences

Keywords

  • Jahn-Teller distortion
  • shear strain
  • manganites
  • lattice distortion
  • perovskites

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-1643