The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Receptor-induced phasic activity of newborn mouse bladders is inhibited by protein kinase C and involves T-type Ca channels.

Author

Summary, in English

OBJECTIVE To investigate the mechanisms involved in the phasic contractile activity after muscarinic receptor activation of newborn urinary bladders and to compare neonatal and adult bladders. MATERIALS AND METHODS Detrusor muscle strips were isolated from newborn mice (aged 0-2 days) and compared with preparations from adult mice (aged 10-12 weeks). The effects of an activator (phorbol 12,13-dibutyrate, PDBu) and an inhibitor (GF109203X) of protein kinase C (PKC) on contractions were investigated. T-type Ca(2+) channels were blocked with NiCl(2). RESULTS The newborn urinary bladders responded with prominent phasic contractile activity in response to carbachol (1 microm). GF109203X (3 microm) reduced carbachol-induced force by approximately 60% in the newborn, compared with 30% in the adult. PDBu (1 microm) enhanced the muscarinic receptor-mediated contraction in adult bladder muscle, whereas it completely abolished the responses in the newborn. There was no inhibition after activation with depolarization (high-K(+)) or purinergic agonists (ATP, alpha,beta-methylene ATP). NiCl(2) (>30 microm) inhibited the peak responses to carbachol in the newborn and at 300 microm it completely abolished the phasic contractile response. The responses of the adult bladder muscle were only marginally affected by NiCl(2). CONCLUSIONS Muscarinic receptor stimulation recruits the PKC signalling pathway in both the adult and neonatal urinary bladder. Potent PKC activation is inhibitory on carbachol-induced activation in the newborn and stimulatory in the adult bladder. Furthermore, muscarinic receptor stimulation activates T-type Ca(2+) channels in the newborn, but not the adult bladder.

Publishing year

2009

Language

English

Pages

690-697

Publication/Series

BJU International

Volume

104

Issue

5

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Urology and Nephrology

Status

Published

Research group

  • Vascular Physiology

ISBN/ISSN/Other

  • ISSN: 1464-4096