The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Myogenic Reprogramming of Bone Marrow Derived Cells in a WDmd Deficient Mouse Model.

Author

Summary, in English

Lack of expression of dystrophin leads to degeneration of muscle fibers and infiltration of connective and adipose tissue. Cell transplantation therapy has been proposed as a treatment for intractable muscle degenerative disorders. Several reports have demonstrated the ability of bone-marrow derived cells (BMDC) to contribute to non-haematopoietic tissues including epithelium, heart, liver, skeletal muscle and brain following transplantation by means of fusion and reprogramming. A key issue is the extent to which fusion and reprogramming can occur in vivo, particularly under conditions of myogenic deterioration.To investigate the therapeutic potential of bone marrow transplantation in monogenetic myopathy, green fluorescent protein-positive (GFP(+)) bone marrow cells were transplanted into non-irradiated c-kit receptor - deficient (W(41)) mdx mice. This model allows BMDC reconstitution in the absence of irradiation induced myeloablation. We provide the first report of BMDC fusion in a W(41)/Dmd(mdx) deficient mouse model.In the absence of irradiation induced injury, few GFP(+) cardiomyocytes and muscle fibres were detected 24 weeks post BMT. It was expected that the frequency of fusion in the hearts of W(41)Dmd(mdx) mice would be similar to frequencies observed in infarcted mice [1].Although, it is clear from this study that individual cardiomyocytes with monogenetic deficiencies can be rescued by fusion, it is as clear that in the absence of irradiation, the formation of stable and reprogrammed fusion hybrids occurs, with the current techniques, at very low levels in non-irradiated recipients.

Publishing year

2011

Language

English

Publication/Series

PLoS ONE

Volume

6

Issue

11

Document type

Journal article

Publisher

Public Library of Science (PLoS)

Topic

  • Cell and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-6203