The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Mechanistic Basis of Branch-Site Selection in Filamentous Bacteria

Author

  • David M. Richards
  • Antje M. Hempel
  • Klas Flärdh
  • Mark J. Buttner
  • Martin Howard

Summary, in English

Many filamentous organisms, such as fungi, grow by tip-extension and by forming new branches behind the tips. A similar growth mode occurs in filamentous bacteria, including the genus Streptomyces, although here our mechanistic understanding has been very limited. The Streptomyces protein DivIVA is a critical determinant of hyphal growth and localizes in foci at hyphal tips and sites of future branch development. However, how such foci form was previously unknown. Here, we show experimentally that DivIVA focus-formation involves a novel mechanism in which new DivIVA foci break off from existing tip-foci, bypassing the need for initial nucleation or de novo branch-site selection. We develop a mathematical model for DivIVA-dependent growth and branching, involving DivIVA focus-formation by tip-focus splitting, focus growth, and the initiation of new branches at a critical focus size. We quantitatively fit our model to the experimentally-measured tip-to-branch and branch-to-branch length distributions. The model predicts a particular bimodal tip-to-branch distribution results from tip-focus splitting, a prediction we confirm experimentally. Our work provides mechanistic understanding of a novel mode of hyphal growth regulation that may be widely employed.

Publishing year

2012

Language

English

Publication/Series

PLoS Computational Biology

Volume

8

Issue

3

Document type

Journal article

Publisher

Public Library of Science (PLoS)

Topic

  • Bioinformatics and Systems Biology

Status

Published

Research group

  • Microbiology Group

ISBN/ISSN/Other

  • ISSN: 1553-7358