The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Imaging polarimetry of the fogbow: polarization characteristics of white rainbows measured in the high Arctic

Author

Summary, in English

The knowledge on the optics of fogbows is scarce, and their polarization characteristics have never been measured to our knowledge. To fill this gap we measured the polarization features of 16 fogbows during the Beringia 2005 Arctic polar research expedition by imaging polarimetry in the red, green and blue spectral ranges. We present here the first polarization patterns of the fogbow. In the patterns of the degree of linear polarization alpha fogbows and their supernumerary bows are best visible in the red spectral range due to the least dilution of fogbow light by light scattered in air. In the patterns of the angle of polarization alpha fogbows are practically not discernible because their alpha-pattern is the same as that of the sky: the direction of polarization is perpendicular to the plane of scattering and is parallel to the arc of the bow, independently of the wavelength. Fogbows and their supernumeraries were best seen in the patterns of the polarized radiance. In these patterns the angular distance delta between the peaks of the primary and the first supernumerary and the angular width sigma of the primary bow were determined along different radii from the center of the bow. delta ranged between 6.08 degrees and 13.41 degrees, while sigma changed from 5.25 degrees to 19.47 degrees. Certain fogbows were relatively homogeneous, meaning small variations of delta and sigma along their bows. Other fogbows were heterogeneous, possessing quite variable delta- and sigma-values along their bows. This variability could be a consequence of the characteristics of the high Arctic with open waters within the ice shield resulting in the spatiotemporal change of the droplet size within the fog. (C) 2011 Optical Society of America

Publishing year

2011

Language

English

Pages

64-71

Publication/Series

Applied Optics

Volume

50

Issue

28

Document type

Journal article

Publisher

Optical Society of America

Topic

  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 2155-3165